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INTEGRAL COHOMOLOGY AND 
DETECTION OF w-BASIC 2-GROUPS 

KIMBERLY PEARSON 

ABSTRACT. In this paper Nwe comlpuite the cohomiology H-(G:Z") of all wv- 
basic 2-gr'ouips (G. w) Nith iritegial coefficients tNwisted by the or-ientatiori char- 
acter w. We also calcillate appropriate restictiori maps arid thlls prove that 
the cohomiology of any w-basic gr'ouip is detected by subgr-ouips isomlorphic to 
one of five types. arid Ne provide a samlple application of this miairl theoremii. 

1. INTRODUCTION 

The w-basic 2-groups were introduced and classified by Hambleton, Taylor, and 
Williams [7], who demonstated the fundamental role of these groups in quadratic 
representation theory. These groups provide the inductive building blocks for qua- 
dratic forms over group rings QG, given an involution induced by w. 

The w-basic groups include some familiar groups, and the cohomology of several 
of these groups has been studied before. The cohomology of the semidihedral group 
was computed by Evens and Priddy [6]; the mod-2 cohomology of the metacyclic 
2-groups has been done by Diethelm [5], Munkholm [11], and Rusin [13]. The 
cohomology of all w-basic groups with mod-2 coefficients and in some cases with 
integral coefficients has been computed by Davis and Milgram [4]; Rusin's work 
on the cohomology of groups of order 32 [14] is also applicable as each family of 
w-basic groups has a representative of order thirty-two. 

The results of this paper are applied by Davis in [3] to classify equivariant in- 
tersection forms arising from closed manifolds which are the total space of a fi- 
nite G-cover. These forms are analyzed by characteristic class formulae involving 
higher-index homomorphisms whose domain is the homology of G. Quadratic rep- 
resentation theory [7] gives a reduction to the homology of w-basic 2-groups, where 
an explicit analysis is required. In addition, the computation of the homology of 
w-basic 2-groups would be a necessary tool for an attempt to generalize the work 
of Milgram, Hambleton, Taylor, and Williams on surgery with finite fundamen- 
tal group in [10] and [8] to the case of nonoriented manifolds, and hence would 
play a key role in any systematic classification of nonoriented manifolds with finite 
fundamental group. 

2. MAIN RESULT 

Let G be a finite 2-group. The group G is basic if its abelian normal subgroups 
are cyclic. If w is a homomorphism from G to Z,, then the pair (G, w) is w-basic if 
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all abelian normal subgroups of G that are contained in the kernel of w are cyclic. 
Note that if G is basic, then G is w-basic for all w. These basic and w-basic groups 
are classified in [7] and are listed with presentations here. 

The four families of basic groups are quite familiar: 
cyclic groups, Z22; 
dihedral groups, D2i+l = (x,y x2 - y2 l,y- I x-1), i > 3; 
quaternionic groups, Q2i (X, 9i= y2 y4 yxy1 = x-1), i > 2 
semidihedral groups, SD22?1 Kx,yX = y2 =l,yxy' x ) i 3. 

Lemma 1 [7]. The pair (G, w) is w-basic if and only if G is basic or G is given 
as a semidirect product 

1 -4 ker(w) -4 G --* Z2 -4 1, 

where ker(w) is basic and the twisting is determined by a homomorphism f: ker(w) 
p-> Z2 so that if f (g) = 1, then zgz-1 = gc, where c is the unique central element 
of order 2 in ker(w) and z generates Z2, and if f (g) 0 O, then zgz-1 g. 

After accounting for isomorphisms between several groups of this form, see [4], 
the w-basic groups can be listed as follows: 

1. (G,w), where G is basic and w is any map to Z2; 

2. D2i+l,fl 
= 

(xI,y,z I x2j -y2 = 2 = 1,yxy-' = xljz- l I -xX2-l zyz-l 
= y), with w : x, y O- 0, z |-4 1 or w: x -* 0; y, z ~- 1; 

3. D2i+1J2 
= (x,y,z I 2 -y2 = Z2 1 yxy-1 x-1 zxz-1 xzyz1 

yx2 ), with w: x,y O-+ 0,z ~-4 1 or w : x F-* 0;y,z ~-4 1 or w : x,z ~-4 1,y 0; 
4. SD2i+l?f3= (X,y,Z lX2 - y2 = Z2 - zizyxy- I - X2'- ZXZ-1 =xx22- 

zyz I yx 2'), with w: x, y O0, z |4 1 or w: x 0; y, z 4 1; 
5. W2i+l = Z2i,fi = (X,y I X2' = y2 - 1,yxy1- = XX2 

- 1 
with w x O-+ 0 

y F-+ 1; 

6. (G x Z2,w), where G is basic and ker(w) = G. 

Definition. For any group G, we say the cohomology of G is detected by the 
subgroups H1, H2,... H H, if 

e rX : H*(G) -- eH* (Hi) 

is injective, where 1 < i < n and r* is the restriction. 

The philosophy is that if the cohomology of G is detected, and if we understand 
the cohomology of the subgroups and know the restriction maps, then we under- 
stand the cohomology of the larger group. For example, if the ring relations or 
Steenrod squares of the detecting subgroups are known, then we can find the corre- 
sponding information for the larger group. Davis and Milgram prove the following 
detection theorem for F2 cohomology of w-basic groups. 

Theorem [4]. Let (G,w) be a w-basic 2-group. Then for all j, H"(G;F2) is 
detected by subgroups isomorphic to the following five types: 

1. abelian groups; 
2. generalized quaternionic groups; 
3. Q2i X Z2; 
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4. W2i+l; 

5. SD2i+l,f3 

In particular, for j _ 0 mod 4 one only needs types 1,3,5; for j 1 mod 4 one 
only needs types 1,3; for j -2 mod 4 one only needs types 1,2,3,4; and for j- 3 
mod 4 one only needs types 1,2,3. 

The cohomology H* (G; F2) and the restriction maps needed to obtain these 
results are recalled in the Appendix; there, we correct the theorem as stated in [4] 
by showing that SD2i+l,f is needed in degrees congruent to 0 mod 4. 

Given a w-basic group (G, w), let G act on the integers via g* n = n if w(g) = 0 
and g n =-n if w(g) = 1. We call the resulting G-module Z', and consider 
the cohomology H* (G; ZW). Detection in the integral case is quite different from 
detection in the mod-2 case. 

In this paper we prove the following theorem. 

Theorem. Let (G, w) be a w-basic 2-group. Then for all j, Hi (G; ZW) is detected 
by subgroups isomorphic to the following five types: 

1. abelian groups; 
2. generalized quaternionic groups; 
3. Q2i X Z2; 
4. semidihedral groups; 
5. SD2i+1J3. 

In particular, for X _ 0 mod 4 one only needs types 1,2,3,5; for j 1 mod 4 one 
only needs types 1,3; for j -2 mod 4 one only needs types 1,3; and for j -3 mod 
4 one only needs types 1,2,3,4. 

The topological motivation for this paper is that charecteristic class formulae 
for surgery obstructions and for the Mischencko-Ranicki symmetric signature for 
manifolds with finite fundamental group are given in terms of universal homomor- 
phisms [16, Theorems B and C], [8, 1.10], [17] whose domains are the homology 
of the group. Detection theorems [7] allow one to consider only w-basic 2-groups. 
Rather than review the machinery of characteristic class formulae, we give a sample 
application of the above computations. 

Theorem. Let f: M -4 N be a degree-one normal map, where N is a closed 
manifold of dimension greater than four with finite fundamental group G and ori- 
entation w - w1 : G - Z2. Suppose that for all subquotients (H/K, w) of (G, w) 
(i.e., K is a normal subgroup of a subgroup H of G with w trivial on K) of the 
form: 

abelian, quaternionic, Q x Z/2, or W if dim N- 0 mod 4; 
abelian, quaternionic, Q x Z/2 if dim N _ 1 mod 4; 
abelian, Q x Z/2, semidihedral, or SDf3 if dim N _2 mod4; 
or abelian, quaternionic, Q x Z/2, SDf3 if dim N 3 mod 4, 
the map f/H x Id: M/H x -S N/H x z1 is normally bordant to a Z[H/K]- 

homology equivalence. Then f x Id: M x S' -* N x S1 is normally bordant to a 
homotopy equivalence. 

Proof. By projective surgery theory [12] the above statement is equivalent to the al- 
gebraic statement that the surgery obstruction a(f) in LP (ZG, w) is zero if 7r*i* (f) 
in LP(Z[H/N], w) is zero for all such subquotients. The fact that ar(f) is zero if 
restricted to a 2-Sylow subgroup was first noticed by Wall [17]. One further reduces 
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to w-model groups by the detection theorem [7, 1.C.8]. The cohomology calcula- 
tions of the theorems above combined with the existence of the characteristic class 
formula give the result. O 

Remark. The above is just a sample statement. Much more precise results can be 
obtained by combining specific computations of L-groups with computation of the 
group homology for particular orientation characters w. 

To prove the main theorem, we compute the integral cohomology H* (G; ZW) 
of each w-basic group (G,w) one at a time. After calculating the appropriate 
restriction maps, we take inventory and find that the above five families of groups 
are the ones needed for detection. 

As the proof of the theorem is a long sequence of calculations, which can be 
sometimes repetitive, we begin by describing the general techniques used in com- 
puting the cohomology and the restriction maps. We then give a short description 
of the detection situation for each w-basic group. The actual calculations, giving 
generators and module structure of H* (G; ZW) as a module over H* (G; Z) and full 
descriptions of the necessary restriction maps, are provided in the Appendix. 

The untwisted integral cohomology, i.e., when w is the trivial homomorphism, 
is well known for the dihedral group and generalized quaternionic groups, and is 
computed in [6] for the semidihedral group. The w-twisted cohomology for many 
w-basic groups is computed in [4]. In the next section, we outline the techniques 
used to compute the cohomology of the remaining groups. 

3. CALCULATIONAL TECHNIQUES 

The Bockstein spectral sequence (BSS) is the principal tool for obtaining the 
integral cohomology H* (G; ZW) from the mod-2 cohomology (see [1]). We recall 
that it is derived from an exact couple, the E1 term is equal to H*(G; F2), and the 
first differential di is given by di (a) = Sq1(a) + a U W, where W = w*x, with 
(x) = H1 (Z2; F2). Generators of the image of d1 in Hi (G; F2) represent generators 
of the Z2 summands of H3 (G; Zw), and generators of the image of dn represent 
generators of Z2n summands. Elements which live to infinity represent the free 
part of H* (G; Zw), so for G finite the Eo, term will consist of at most a single 
term in degree zero. In our cases, almost everything dies at d1 and the E2 term is 
relatively small. 

Our first line of attack on the E2 term is to look for a subgroup H of G such 
that r*: H* (G; F2) -* H* (H; F2) gives an isomorphism from E2 (G) to E2 (H) or to 
a direct summand of E2(H). If such an isomorphism on E2 terms can be found, it 
induces an isomorphism on E for all n greater than 2 by the Comparison theorem 
[9, p. 355, Ch. 11, ?11]. If H*(H; ZW) is known, we now know the exponent of the 
elements of higher torsion and we are done. This technique works in many cases if 
one lets H to be a maximal cyclic subgroup (see [4]). 

When no such subgroup can be found, we use the Leray-Serre spectral sequence 
(LSSS) with twisted integral coefficients in order to determine the exponent of 
elements in low degrees, perhaps in H2 and H3. Often we can show that other 
classes of exponent greater than two arise as products of these low-degree classes, 
and it turns out that our detection results suffice to determine the exponents of the 
products. 

These methods are sufficient to compute the integral cohomology of all w-basic 
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groups from their mod-2 cohomology with only one exception, the quaternionic 
group with trivial coefficients, which is well known anyway. 

Once the cohomology has been computed, the next goal is to find the restriction 
maps. Exploiting the mod-2 results, for each w-basic group (G, w), we first compute 
the integral restrictions for the same subgroups which detected the cohomology of 
the group with F2 coefficients; these mod-2 restriction maps are provided in [4]. 

Lemma 2. Let H be a subgroup of G, w: G - Z2, wiv the restriction of w to H, r 
H -* G the inclusion. If r*: H3(G; F2) -* H3(H; F2) is injective, then the kernel 
of r* : Hi (G; Zw) H J(H; ZW ) at most consists of classes {cx E Hi (G; Zw) I = 

2-y for some 'y}. 

The following diagram gives the proof: 

H3(G; ZW) r Hi IH; 

I 
r* 

L 
H3(G; F2) r 'H3(H; F2) 

Hence, the only classes of H3(G; ZW) which are not detected are either scalar 
multiples of classes with high exponent, or else reduce mod-2 to an undetected 
element of Hi (G; F2). In fact, the above diagram determines r* up to elements of 
Hi (H; ZW) that are in the image of multiplication by 2. In particular, if H3.(H; ZW) 
is all exponent 2, then r* is determined completely. 

A second technique is to make use of the ladder of long exact sequences on 

cohomology coming from the short exact sequence of G-modules, 1 -- z X2 
Zw- F2 -> 1. Here the connecting homomorphism 1w coincides with d1 from the 
BSS, and all vertical maps are restrictions. We will call this the BLES for short. 

* Hi(GC;ZW) X 'H3(G;F2) 
w 

:Hi+'(G;Zw) x2? Hi+l(G;ZW) x 

HiH.Z (H; Z H3 (H; F2) Hi+' H+(H; Zf) X2Hi+ I(H; Z ) x w 

A combination of these two techniques works in almost every case. To handle 
the few remaining ambiguities, we look at 

- ~~~Hi (G; Zw ) Hi (HI 

HJ (K; ZW) - Hi (H n K; ZW) 

where K is a better-behaved subgroup, all maps are restrictions. Repeating this 
with several different K's in stubborn situations, we find enough information to 
completely determine the integral restriction maps given the mod-2 restriction maps 
in all cases. 

Some w-basic groups require more subgroups to detect their integral cohomology 
than was needed for their mod-2 detection. To compute the additional restriction 
maps, we compute the maps with F2 coefficients first, and then follow our above 
techniques for obtaining the integral maps out of the mod-2 results. Most of the 
mod-2 maps we can determine by using the following Gysin sequence and double 
coset formula. 
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Theorem. Let H be an index-two subgroup of G, and ,u the unique nontrivial class 
in H1(G; F2) such that the restriction of ,u to H1 (H; F2) is zero. Then 

H* H(G; F2) rH'(H; F2) tr Hi (G; F2) H' 1t 
H(G; 2) 

is exact. 

We refer the reader to [15] for a proof. We use the following linearity property 
[2, p. 256, Ch. 12, ?8] for help in computing tr, 

tr((r*a) . b) = a tr(b). 

We usually do not need the double coset formula (see [2, Ch. 12]) in its full 
generality, but use the following "baby" version, 

r* o tr(a) = a + c* a, 

where r is restriction to an index-two subgroup H, and c is conjugation by an 
element not in H. 

4. SUMMARY OF DETECTION RESULTS 

4.1. The dihedral group D2i+l for all w is detected by its mod-2 detecting sub- 
groups, two copies of Z/2 x Z/2, and the maximal cyclic subgroup (x). 

4.2. The integral cohomology of the quaternions, H* (Q; Z), is detected by smaller 
quaternionics and eventually copies of Z4 except in degrees 0_ mod 4. The elements 
T2Oi/ are not detected by any subgroup, where K generates H4(Q; Z). The twisted 
cohomology H* (Q; ZW) for each nontrivial w is detected by abelians except in 
degrees _ 3 mod 4. The generator a of H3(Q; ZW) for each w is not detected, nor 
is /in -a in H4,+3 (Q; Zw). Though the cohomology of Q8 is slightly different than 
that of the higher-order quaternionics, the detection situation is exactly the same. 

4.3. The semidihedral group nicely illustrates the full range of detection possibili- 
ties as the homomorphism w is varied. The ring H* (SD; Z) is detected by its cyclic 
and dihedral subgroups (hence by abelians); this is an improvement over the mod-2 
situation, where a quaternionic subgroup is needed for detection in degrees congru- 
ent to 2 mod 4. The cohomology of the w-basic group (SD, w: x s-> 0, y H-> 1) is also 
detected by abelian subgroups. For (SD, w: x, y ~-* 1), the quaternionic subgroup 
is needed for detection in degrees 2 mod 4. Finally, (SD, w: x l-* 1, y O-* 0) is 
not detected by any proper subgroup in degrees -3 mod 4. 

4.4. The ring H* (D2i+1,f2; Z) is detected by the abelian subgroups which detected 
Df2 with F2 coefficients, and the quaternionic subgroup (x, yz), which is needed 
in degrees-- 0 mod 4 to detect some elements of high exponent. The abelian 
subgroups detect (Df2, w) for all nontrivial w. 

4.5. The ring H* (D2i+1 ,fi; Z) is detected by abelian subgroups. Its mod-2 detect- 
ing subgroups, D2i f2 and D2i x Z2, and the cyclic group (x) detect H* (Dfl; Z). 
These three subgroups are then detected by abelians except for one element in 
H4, (Df2; Z) for each n. However, the only classes of H4, (Dfl) which hit these 
elements of H4, (Df2) are also detected by (x). These same three subgroups detect 
all the w-basic groups (Dfl, w). For these w, the restriction w- to Df2 is nontriv- 
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ial, so H* (Df2; Z") is detected by abelians, and so we have abelian detection of 
(Df1, w). We comment that the situation is a bit different when w is not one of 
the w-basic homomorphisms. For two of the three non-w-basic maps we do have 
abelian detection, but for the non-w-basic pair (Df1, w: x l-* 1, y O-* 0) we also 
need (xz, y) , (SD2i+l, w). 

4.6. The integral cohomology H*(SD2i+l,f3; Z) is detected by (x, xy, z) - Q2i x 
Z2, (X2,y,z) Z- D2i,f2, and (xz,yz) v Q2i+l, even though H*(SDf3;F2) is not 
detected. These same subgroups work for H* (SDf3; ZW) for all w-basic w, except 
in degrees- 0 mod 4, where we have classes not detected by any proper subgroup. 

4.7. The twisted cohomology module H* (W2i+l; ZW) is detected by abelian sub- 
groups for the trivial and the two w-basic homomorphisms. 

4.8. Finally, we need to consider all groups of the form G x Z2, where G is basic and 
w is trivial. The only one which is not detected by subgroups already mentioned is 
Q2i x Z2, and here we have undetected elements in all degrees. 

We note here that our main theorem is sharp; undetected elements of SDf3 in 
degrees 0 mod 4, of SD in degrees 3 mod 4, and of Q in degrees 0 or 3 mod 
4 show that we have given a minimal list of detecting subgroups for the w-basic 
groups. 

Remark. After comparing the integral detection theorem with the F2-detection 
theorem, one might wonder about the detection situation with (Z2k )W coefficients. 
Neither F2 nor integral detection nor both implies (Z2k)W detection. For example, 
take (G, w) equal to the semidihedral group of order thirty-two with w: x O- 0, y ~-* 

1. The semidihedral group is detected with mod-2 coefficients and H* (SD; ZW) is 
detected by abelian subgroups. However, one can check that the element 4e2 2 

H2 (SD; (Z8)w ), obtained by reducing 4e2 C H2 (SD; Zw) mod-8, is not detected 
by any proper subgroup. 

APPENDIX: THE CALCULATIONS 

All techniques used in calculation are described in the body of the paper. Though 
we do not specify at each and every turn which method is used, we will point out 
the computations which required more techniques than average. For each group we 
give a list of generators of H*(G; Z) as a ring, and list generators of H*(G; ZW) as 
a module over H* (G; Z). 

The F2-cohomology of the w-basic groups, and in some cases the integral coho- 
mology has been computed before. We refer the reader to [5, 4, 6, 11, 13, and 141. 
For the details on the mod-2 restriction maps, we refer the reader to [4]. 

We follow the notation of Davis and Milgram for F2 cohomology; here are some 
comments to familiarize the reader. Each nonabelian w-basic group except W has 
a central subgroup of order two with dihedral or dihedral xZ2 quotient; Davis and 
Milgram use this extension to compute the cohomology in each case. The basis 
chosen for H1(D2i;F2) is e,f, where e(x) = f(x) = f(y) = l,e(y) = 0, since in 
this basis we have the convenient relation e U f = 0. The class h represents the 
generator of H1(Z2; F2) when the quotient is D x Z2. If we let A generate H1 of 
the central Z2 subgroup of D, then A4 lives to infinity in the spectral sequence 
of each w-basic group except SD2i,f3. The class in H4(G; F2) which represents 
A4 is called K in each case. Detection shows that cupping with K is injective for 
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each w-basic group. Furthermore, we find that i is the mod-2 reduction of a class 
in H4(G; Z), which in most cases generates all the higher (i.e., greater than two) 
torsion of H* (G; Z). Unless otherwise specified, 2a = 0 for each class o, and we 
will write H* (Z2i x Z2; F2) = F2[b, c] 0 A(a), where dim(a)=dim(c)=l, dim(b)=2. 

We name the integral classes after the classes to which they reduce mod-2. This 
can sometimes be misleading; for example, there is a indecomposable element in 
H2(D; Z) which we name e2 because it reduces to the product e U e in H2(D; F2). 
However, whereas reduction mod-2 is nearly an injection in all our cases, and as we 
use this constantly to obtain integral information from the mod-2 situation, and as 
the integral cohomology is computed out of mod-2 in the first place, it has proven 
most convenient not to rename the integral classes. 

Al. THE DIHEDRAL GROUP D2i+l = (x,yIx2 - l,yxy1 x') 

We have H*(D; F2) = F2[e, f, w]/(e U f ), dim(e)=dim (f )=l, dim(w)=2. De- 
tected by (X2 ,y) and (X2 ,xy), both copies of Z2 x Z2; with both of these 
subgroups, r*(w) = a2 + ab where a dual to x2 . Here e(x) = f(x) f(y) 1 
and e(y) = 0. Using this basis gives us the convenient relation e U f = 0. 

Let wj be a map to Z2 for each j: Wlx - O,y - 1, W2: x >-+ l,y O-4 0, 
W3: x, y 4 1. 

For the dihedral group, all calculations are routine. Using the BSS and injecting 
to a maximal cyclic subgroup at the E(2) terms computes the cohomology in each 
case. Letting r: (x) -- D be inclusion, we have 

H*(D;Z) = Z[e2 f2,(e +f)ww2], exp(W2)n = 2i; r*(e2) = r*(f2) = 2i-lb 
r *(w 2) = b; 

H*(D;Zw1) (e+ f,w), exp(w) = 2'; r*(e + ff) 0,r*(w) = b; 
H*(D; ZW2) = (e, f2, fw), all exponent two; 
H* (D; Zw3) = (f, e2, ew), all exponent two. 
Each of these integral cohomologies is detected by (x) and the two mod-2 de- 

tecting subgroups, two copies of Z/2 x Z/2. The restrictions are computed using 
BLES. For example, e2 H2 (D; Z) is in the kernel of multiplication by two, so 
it is in the image of /3, and in fact we know from the BSS that /3(e) = e2. Then 
r*(e2) = r*(/3(e)) = ,B(r*(e)) = /(a). Exactness of the lower row tells us that /(a) 
must be 2-1b since 22-1b is in the kernel of multiplication by two. By reducing 
mod-2, the other restriction maps are clear. The element w2 c H4(D; Z) generates 
all higher torsion of H*(D; Z). The cyclic subgroup (x) detects (w2)n for all n, and 
all integer multiples of them as well. Applying Lemma 2 to account for the classes 
of exponent two, we see H*(D; Z) is detected by abelian subgroups. 

The situatiorn is similar for H*(D; ZWl). The element w c H2(D; ZWl) has 
high exponent, as does any (w2<. w E H4n+l?(D; ZW1). These elements and their 
integer multiples are also detected by (x). For H*(D; ZW2) and H*(D; ZW3), we 
can immediately invoke Lemma 2 and conclude that we have detection by abelian 
subgroups. 

All ring and module multiplication is then determined by the abelian detection. 

A2. THE QUATERNIONIC GROUPS Q2i+1 - 

(x, yIx 2i-1 Y2 Yy4 = l1yxy- = X-1), FOR i > 3 

We have H*(Q; F2) = F2[a, b, i']i/(ab, a3 + b3), dim(a) = dim(b) = 1, dim(ii) = 4, 
with. a(x) = b(x) = b(y) = 1, and a(y) = 0. The element i is detected by the central 
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Z2, but a2 and b2 are only detected by copies of Q8, and a3 is not detected at all. 
This is clear as a and b restrict either to 0 or to a + b in the smaller quaternionic 
groups, hence a2 and b2 will be detected but not a3. 

The maps wj are as before, r1: (y) Z4- Q, r2: (xy) -Z4 Q, and 
r3: (x) - Q, and we obtain 

H*(Q; Z) = Z[a2,b2,2 2 /(a2)2 (b2)2 a2 U b2 n0, with exp(,) - 2i?1; 

rl:a2 1- 0 , b2 1-* 2b,, N a b2; r2* a2 1-* 2b, b2 1-* O,,' is-a b2; r3: a2 1-* 2i-1b,b b- 

H*(Q; ZW1) = (a+b, a2(b2), with exp(a2Hb2) 2i1, and also exp(a2-b2)*,+1 
221; rl(a2 + b2) r*(a2 + b2) =Or (a2 + b2) 2b; 

H* (Q; Zw2 ) = (a, b2); r* (b2 ) - 2b,r b(b2) b O, r a(b2) 0; 
H* (Q; Zw3) = (b, a2;r(a2) = ,r (a2 ) = 2b, r n a(a2 ) 0 . 
The trivial integral cohomology of the quaternions is well known, and for two of 

the nontrivial twistings the BSS collapses at the B2 terms. To find the exponent of 

applying universal coefficients, we find exp(a2 + b2) - 

All restriction maps are determined by the BLES. For j _2 mod 4 we can see 
that Hi (Q; ZW) is detected by the three abelian subgroups; this is an improvement 
over the F2 situation. However, detection has worsened in degrees congruent to O 
mod 4. The class ti E H4t(Q; Z) has exponent equal to the order of the group, 
so it is impossible for 2e to be detected by any proper subgroup. The situation 
has not changed in other degrees. To see that the class a3 E H3 (Q; Zw2) is not 
detected at all, consider the BLES. We know 3w(a2) =a3 from the BSS, and 
recalling the mod-2 detection, we know r* (a2) is zero for each abelian subgroup. 
Thus, r*(a3) = (iw (a2)) i wt(r* (a2)) zero for each abelian subgroup. 

All module structure can be determined by detection except a2 Ub2 in H4 (Q; Z), 
and a2 U or b2 U ao, where a, is any degree-one class in the twisted cohomologies. 
But both of these ca 4nb e quickly solved. Since H3(Q; ZW) H3(Q; F2) is injective 
for all w, reduction mod-2 determines the products of degree 3. Finally a2 U b2 is 
solved by noting that both terms come from the dihedral quotient of Q: a2 U b2 
r* (e2 ) U*(f2 ) r* (e2 U f2 ) = w* (O) 0O 

The F2-cohomology of Q8 is slightly different from that of Q2i for i > 3, but 
detection and the integral cohomology is very similar; H*e(Q8; F2) = F2 [a, b,H 4QZ/ 
(ab + a2 + b2, a2b + ab2), with a, b, ,' as before. We find H*(Q8; Z) = Z[a2, b2, i'i; 
the class 42 r is not detected by any proper subgroup. The twisted cohornologies are 
H*(QB ; ZW1) (a +tb, a2 + b2); H*(QsolZvd ) - (a, a23 ; H*(Q8; Zw3) (b,ibn; the 
element a2b which occurs in each nontrivial twisting is not detected by any proper 
subgroup. 

A3. THE SEMIDIHEDRAL GROUP SD2+i+ = (, y|x2~ = y2 2i,yy1x 1x ) 

We have H*(SD; F2) =F2[e, f, e3, ,41/(ef. ee3, e3, e3 + f2 U ,'), with dim(e)= 
dim(s) 1, dim(e3) =3, dim(N) 4. The elements e and f come from the dihedral 
quotient. 

Let r12 K (x) SD, r27 (x2,y)2U D22= SD, and r3: (X2,X8) SD 
bethe inclusions. Then dt :ced by ,fn proper+ f,se3 rop (e +t)w,iste l o m;or3o ae l 
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a + b, f a-* O, e3 -* a3, i a-* K4, and these three subgroups detect. Note in particular 
that Q is needed to detect the element c2. The maps wj are as before. 

Integrally, we get H*(SD; Z) = Z[e2, f2, e3f2, i], with exp(,'7) = 2; r*: 
c 2 1b,f2 2i-b,c3f2 0,,' b2; r2*: e2 O * 0,f2 c2 f2, 3f2 
(e3 + f3)w, , a_* W2; r* c2 1 + a2 + b2, f2 f 0, c3f2 1_ 0, , a i . 

Here the exponent of i'i can be computed by injecting to the maximal cyclic 
subgroup, also see [6]. Each restriction map given is completely determined by 
reducing mod-2. In the mod-2 case, the kernel of r* @ r* was e 2 Kn. But with 
integer coefficients, r* now picks up these elements; hence the cyclic and dihedral 
subgroups (therefore abelians) detect H* (SD; Z). 

We find H*(SD;ZW1) = (e + f,e3f,e2, with exp(e2) = 2i1, also exp(e2) 
i'in =2i-1; r7 : e+f a - 0,e3f 1-- 2i-1b2,e? -2b; r2*: e+f a-* e+f,e3f -* 
(e2 + f2)w,e2 1-*2w; r3*: e + f a*a + b,e3f 0- *,e2 -* a2 + b2. To find the 
exponent of e2 we use the LSSS to find that H1 (SD; Zw') is Z/22-1. Calculation of 
the restrictions r* and r* are straightforward using the BLES, except r* (e2), which 
requires considering the intersection (x2) of (x) and (x2, y) and then using r*. 

The second twisting renders H*(SD;ZW2) - (e, f2, e3), with exp(e3) = 4; r* 
e a-* a,f2 1-* 0,e 3 -* ab; r* e a_* 0,f2 1-* e2 + f2,e3 2 

-* (e + f)w; r: e a 

a + b, f2 2-+ 0, e3 H-4 a3. 

This time the BSS has E2 term consisting of e2, e3, and i times these two 
elements. We use the LSSS to compute H2(SD; ZW2). We already know H1 and 
H3, as the BSS provided complete information on H2 and H4. This forces enough 
of the differentials in the LSSS so that H2 only has classes of at most exponent 4. 
On the other hand, it has at least exponent 4, else e3 would not have lived to E2 
in the BSS. 

Note here that 2e3 is not detected at all, the kernel of ?r* is 2e31Kn, thus 
in our main theorem the semidihedral group is necessary for detection in degrees 
congruent to 3 mod 4. 

The final twisting gives us H*(SD;ZW3) = (f, e2, e3f), all exponent two; r* 
f a-* a,e2 1-* 0,e3f 3 f 0; r2*: f -+ e + f,e2 I 0,e3f -* (e2 + f2)w; r3 f a-* 

0, e2 -* a2 + b2, e3f 2, 
- 

2i1 , All restrictions are computed using the BLES, and 
by Lemma 2 these subgroups detect H* (SD; ZW3). 

The ring and module structures are almost determined by detection, except for 
the problem in degrees _ 3 mod 4 for the second twisting. We are lucky, however, 
because all pairs of generators which multiply to give something in a degree _ 3 
mod 4 come from the dihedral quotient, so we can multiply in the submodule where 
the product structure is understood. For example, take e + f E H1 (SD; ZW1) and 
e2 E H2(SD; Zzu3): (e+ff) Ue2 7r* (e+f) U7r*(e2) = 7r* (e+f Ue2) = 7r* (e3) 2e3. 
To see r*(e3) = 2e3, take e2 E H2(D;F2) and we have /3(wr*(e2)) = 3(e2) 2e3 
from the BSS, but on the other hand, 3(wr*(e2)) = 7r*(/(e2)) = r*(e3). 

The rest of the groups are w-basic only for certain nontrivial w, but we also 
compute the trivial integral cohomology, as H* (G; ZW) is a module over H* (G; Z). 
The following three groups have central extensions 1 - Z2- G -- D x Z2 -+ 1, 
and the degree-one cohomology classes e, f and h arise from the quotient, with e, f 
as before and h is dual to z, the generator of Z2. 
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A4. THE GROUP D2i+1,f2 = (x,y, ZX2 y2 z2 1yxy-1 x-1 

zxz 1= X, zyzl I yx 2) 

We have H*(Df2;F2) = F2[e,f,h,i]j/(ef, (e+f)h2), dim(N) = 4. 
Let r1: (xIz) rv Z2i X Z2 -> Df2, r2 (X2'X zy) - Z4 x Z2 Df2 and 

r3: (x2 2z, xy) r Z4 X Z2 -* Df2 be inclusions. 

Lemma. We have r* (i) = b2 + bC2 for each i. 

Proof. For each subgroup, we can observe that on the E2 term of the LSSS, A4 
restricts to i4, where K, represents A4 and b represents P2. Thus we know that on 
cohomology r, restricts to b2 plus possibly terms coming from "further down the 
diagonal". 

We begin with r* (t). The subgroup is invariant under conjugation by y, and 
we will use the condition that c*(r* (r,)) r= (ce(i-)) = r (,) to restrict the possi- 
bilities for r*(i). The Gysin sequence in this case tells us that tr(b) = h2, so that 
r*(tr(b))=c2. By the double coset formula, c* (b) = b-+ cc2; it is easy to see c* (a) = a 
and c* (c) = c. Since r (/s) must include a b2 term, the conjugation requirement 
forces r* (i) to be b2 +-bc2 plus possibly ac3 and C4 terms. By making an appropriate 
selection for ii we may assume r* (i) b2 + bC2. 

The other two calculations are similar. As both other subgroups are invariant 
under conjugation by z, we find c*(rr*()) r~i1(t) for i =1 or 2, and our task is 
now to determine the map c*. We do the general case, that is, if X : Z/21 x Z/2 
Z/22 x Z/2 maps g -9 g and h -- hg 1, then we determine q* on cohomology. 
It is clear that q*(a) = a and 9*(c) c. To find 9*(b), we look at the Gysin 
sequence associated with the group W2i+2 and its subgroup (x, y) Z Z/2i x Z/2, 
as conjugation by x in this case is the same as q (W is covered in more detail in 
A7). We see from exactness of the sequence that r*(tr(b))=c2, so by the double 
coset formula, 0* (b) = b + c2. Then as in the ri situation, we find r* (K) b2 + be2 
plus possibly ac3 and c4. Again we choose an appropriate representative for i so 
that rQ (K) = b2 + bC2 for both i. L 

It is then clear that these three subgroups detect H* (Df2; F2). 

Integrally, H*(Df-2; Z) - (e2 f2, h2, e2h+eh2 Ie2h+f2h, /), with exp(K') 2i?1, 

for each n. For the exponent of , we note that it cannot exceed 2i+ as Di2 has 
a Z2 X Z2 subgroup. On the subgroup (x, yz) Q2i+l, K restricts to e c H4(Q; Z) 
(this is clear by reducing mod-2) so the exponent must be at least 2i+1, and this 
subgroup will be necessary for detection. 

The restriction maps are r*: e2 ~* 2-lb f2 2 2'-1b h2 ~_4 C2; r* e2 ~_4 0, f2 
* 2~~~1 c24 2b; r3 e2 1_* c2,f2 1-* 0,h2 1-4 2b; s } b2 + bc2 and the odd-degree 

elements are mapped to zero in each case. These are all determined by the BLES, 
except for r*(ti) which is found by reducing mod-2. 

Let r4 (x,yz) _v Q -- Df2 be inclusion. Then r*: e2 ~* a2,f2 -* b2,h2 - 

a2 + b2, e2h + eh2 1-* 0, e2h + f2h 1-* 0, i N-* a ; all these are clear by reducing mod-2. 
Since r* picks up all integer multiples of /-. and this is the only higher torsion, these 
four subgroups detect H* (Df2; Z) by Lemma 2. 

Let w1: (x, y, z) -* (0, 0, 1), W2: (x, y, z) - (0, 1, 1), W3: (x y, z) - (,0, 1), 

then we obtain 
H* (Df2; ZW1) = (h, e2 + eh, f2 + fh), H* (Df2; ZW2) = (e + f + h, eh, f h), and 

H* (Df2; ZW3) = (e + h, eh, f2 + fh), all exponent two in each case. Since we have 
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an injection H* (Df; ZW) H* (Df2; F2) for each w, the abelian subgroups will 
detect the twisted cohomology as they did in the mod-2 case. 

A5. THE GROUP D2i+1,f1 (x,y,z|x2 - y2 = 2 =,yxy I =x 1 

zxz-1 1 zyz -1 y) 

We have H*(Dfl; F2) = (e, f, h, e3, K)/ef = eh2 ee3 0 O, dim(N-) = 4, dim(e3) 
3, and on the spectral sequence e3 represents f A2, where A is the generator of 

H1(Z2; F2) 
Let ri: (x2 y, Z) -_ D2 x Z2 -* D2i+l,f, and r2: (x2, xy, z) 

- D2i,f2 -D2+l,fl 
be inclusions. Then r* : e X-* 0, f -* e + f, h - h, e3 - eh2 + e2h + ew + fw, 
es F-* w2 +wh2 + (e+f)wh; r* : e -+ e+f,f ~-* 0,h 0-4 h,e3 -* eh2,,s - , . 

These two subgroups detect H* (Dfl; F2), so it is eventually detected by abelian 
subgroups. 

For r* (e3) we need the Gysin sequence: eh2 C H3(Df2) is in the kernel of 
transfer, hence in the image of r*, and e3 is the only thing available to hit it. 
In computing rI*(e3), the key calculation is tr(w) in the Gysin sequence, where 
w C H2(D x Z/2). Using the detecting subgroups of D x Z/2, we obtain c*(w) 
w ? h2 + eh + fh, so tr(w) = h2 + fh plus possibly e2 and eh. This implies 
tr((e + f)w)=ftr(w)=fh2 + f2h, hence eh2 + e2h + ew + fw is in the kernel of 
transfer. Again, e3 is the only element which can hit it. Similarly, the double coset 
formula gives us tr(w2) = h4 + f2h2 plus possibly e4 and e3h. The Gysin sequence 
shows that the e4 and e3h terms are impossible, and also that w2 +wh2 + (e + f)wh 
is in the kernel of transfer, hence the image of r*. Classes representing /-. on the 
spectral sequence level are the only ones available to hit w2 + wh2 + (e + f)w, and 
we can choose i appropriately. Determining r *(i) is similar. 

Here we must be careful that we do not make incompatible choices when speci- 
fying the restrictions for e3 and Kc. It suffices to check that our two choices do not 
differ by elements which are not in the kernel of both restrictions. These elements 
are detected by the intersection (x2, z) of the two subgroups. Checking to see that 
the usual intersection diagram commutes for both i- and e3 ensures that we do not 
have a contradiction. 

We find H*(Dfl; Z) = (e2, f2, h2, e2h, f2h+fh2, , f2e3, h2e3, (f2+fh2)e3), with 
exp(K') = 22. The exponent of K' is determined by injection of a maximal cyclic 
subgroup at the E2 term of the BSS, and the ring structure is clear by reducing 
mod-2. 

Let r3: (x) -* Df1 be inclusion. It is clear from the BLES that r3*: e:2 
2-1b, f2 1* 2'-1b, h2 ? 0 O, (f2h + fh2)e3 1-4 0, r, }-4 b2, with all odd-degree classes 
going to zero. The restrictions r* and r* are almost entirely determined by reducing 
mod-2, since the integral cohomology of D x Z2 and Df2 has torsion greater than 
two only in degrees congruent to 0 mod 4. This leaves only rj* (K), and even in 
this case the mod-2 reduction tells us that rl*(i) w2 + wh2 + (e + f)wh and 
r *(K) = s. Since (x) detects r, and this is the only higher torsion, these three 
subgroups detect H* (Df,; Z). 

Let w1 : (x, y, z) H-* (0, 0, 1) and w2 : (x, y, z) (O, 1, 1), then 

H*(Dfl; Zwl) = (h, e2 + eh, f2 + fh, he3, (f2 + fh)e3), all exponent two; 
H*(Dfl; ZW2) = (e + f + h, eh, fh, (f + h)e3, fhe3), all exponent two. 

Here again, r* and r* are determined by mod-2 reduction; H* (H; ZW) is all 2- 
torsion for both homomorphisms w and for both subgroups. The restriction to the 
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cyclic subgroup is completely given by the BLES. In the first twisting the restriction 
r* is r* : e2 + eh - 2-1b f2 + fh -* 2i-'b, he3 F-4 b2, cv 0, where av is any 
class of odd degree. In the second twisting the restriction is r : eh X-* 2i-1b, fh 
2'-1b, (f + h)e3 ~-> 2'-b2, ca }__ 0, for all av of odd degree. 

Since there are no classes of high exponent, these three subgroups detect the 
integral cohomology since they detected mod-2. Furthermore, (Df2, f?bj) and (D x 
Z2, Jij) are both detected by abelian subgroups for j 1 or 2, so we in fact have 
abelian detection of these two w-basic groups. 

A6. THE GROUP SD2i+l,f3 - (x,y,zx2= y2 = Z2 1, 

-yx 1X- x2' 1 - I 2ij1 zyz1 = 2 

We have H*(SDf3; F2) = (e, f,h,U5, V5, 8)/ef = 0, e3 = fh2,e4 = f2h2 = 

e3h= , f-aJ = ev5 = U5V5= e3U =, e2U5 h2v5, (U5)2 = e2i8 + eh4U5, (V5)2 
f2 r, with dim(U5)= dim(v5) 5, dim(Q8) = 8, Ua represents eA4 and V5 represents 
fA4 on the spectral sequence. This corrects A.1.5.6 in Appendix 1 of [4]. 

The elements e3h U ,8 c H4+8n(SDf3; F2) are not detected by any proper sub- 
group. The groups (x, Y, Z) -Q2i X Z2 and (x, xy, z) D 2, with restrictions 
r1 and r2, detect all but e3i-n and e3 hKn. The maps r* and r* are determined using 
the Gysin sequence and the double coset formula and are as follows: 

ri : e 4 a + b, f j- 0 , h j -+ c, U5 
j 4 (a + b) + ac4, V5 0- a ac, fI K8 +- CK; 

r2: e - 0, f S-* e + f, h ~- h, a15 1 eh4, V5 a 3 (e + f), s8 
Both r2*(U5) and Vr*(V5) are determined by the Gysin sequence: it is clear that 

both eh4 and and a3c2 are in the kernel of transfer, and respectively U5 and V5 are 
the only possible classes to hit them. 

Computing r* (U5) is more delicate. First of all, to get sufficient information from 
the Gysin sequence, we need to know tr(s), where es E H4(Q x Z/2). Exactness of 
the sequence forces tr(Q) to be h4 plus possibly e3h, e2h2, and eh3. The double coset 
formula then implies c* (,) = +c4 plus possibly (a+b)2c2 and (a+b)c3. To narrow 
down the possiblities, we use the naturality of Steenrod squares. First, Sql (cX (r,)) 
= c*(Sq1Q()) = 0; thus, the (a + b)c3 term is impossible. Second, Sq2(c*(j,i)) 
c*j(Sq2(s)) = 0; so, the (a + b)2c2 term is impossible. 

We now have tr(i-) = h4 plus possibly e3h. Regardless, tr((a + b)>) = etr(t) 
eh4, so that (a + b)t, + ac4 is in the kernel of transfer. The only available classes 
to hit (a + b) , + ac4 are U5 and U5 + V5. Notice that here we cannot simply make 
a convenient choice for U5 so that r* (U5) is the desired element. Since either U5 or 
U5 + V5 could restrict to (a + b) i + ac4, by merely declaring U5 to be the element 
which hits (a + b)i A+ ac4, we may end up with something which no longer represents 
eA4 on the spectral sequence. Hence, we must do a bit more work and determine 
whether ru (U5) maps to (a + b) s + ac4 or to (a + b)> + ac4 + a3c2. 

With just the information we have so far, we know that r* g r* is injective on 
H6. Using this, we check that f U5 is zero, so U5 is in the kernel of multiplication by 
f and thus in the image of transfer. The Gysin sequence tells us that the element to 
hit a5 must be ai plus possibly c/, ac4, a2c3. Let cv be the class so that tr(av) = U5, 
and the double coset formula gives us r* (U5) = av + C (cv). We already know that 
the left-hand side of the equation is (a + b) -I+ ac4 plus possibly a3c2; after writing 
out the right-hand side, we see that cv must be ai + ac4. Now that cv is determined, 
we apply the double coset formula again and see r7 (a5) = (a + b)i'i + ac4. 

The argument for r* (v5) is almost identical. 
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After having made the above computations, we proceed with the Gysin sequences 
and find immediately that r* ('i8) =;2 + c44K, and that r* ('g) = , 2 plus possibly 
eh3,' and h4K. This can be quickly settled by considering the intersection of the two 
subgroups, (x2, z) _ Z/2i-1 x Z/2. If rl*(K8) is K2 + c4K, then on the intersection 
K8 restricts to b4 + b2c4. This forces r2*(K8) to be 2. 

With SDf3, as with Dfl, we must take care that no contradictory choices are 
made in specifying U5, V5, and K;8. The reader can easily check that no contradictions 
occur. 

The terms e3K8 are detected by the subgroup (xz, yz) - Q2i+l . We compute 
this map by intersecting with the above two subgroups: r* : e i + a, f > + b, h 
b, U5 1 > aK, V5 1 > brl K;8 1- K 2 

We obtain H*(SDf,; Z) (e2 f2 h2 e2h + eh2 f2h + e3 e3h eU5 fv5, ehU5 + 
h2u5, fhv5 + h2v5, ,8), with exp(e3h,8) 2' and exp(r,8)= 2i+1. We would like 
to comment that this ring has eleven generators and at least fifty relations. Luckily, 
H*(SDf3;Z) is detected by (x2,y,z), (x2,xy,z), and (xz,yz); one can use these 
subgroups to determine the ring structure. 

We compute r* first. Since H* (Q; Z) has torsion greater than two only in degrees 
congruent to 0 mod 4, reducing mod 2 settles all cases but e3h and K;8. The BLES 
handles both of these and we obtain r*(e3h) = 2,s and r5*(i8) = K2 

Similarly, r* can be computed except for e3h by reducing mod-2, r7*(K8) 
2 + c4r, Reducing mod-2 tells us that r*(e3h) = nK for some n. As we already 

know r*, we consider the intersection of Q and Q x Z2 and the only possibility is 
then r*(e3h) = 2r, E H4(Q2i x Z2) 

For the last restriction mod-2 reduction settles every case except e3h. This time 
we use the fact r*(e3h) = 2 and consider the intersection of Df2 and Q x Z2 
Combined with the information from reducing mod-2, we obtain r2*(e3h) 3 2i E 

H4(Df2; Z). 
To check that these three subgroups detect, notice that they detected 

H'(SDf3; F2) for all j not congruent to 0 mod 4. Since H3 (SD f3; Z) has no higher 
torsion in those degrees, by Lemma 2 they detect integrally. In H4n(SDf3 ;Z) we 
only need to worry about e3hKn , ,n and their integer multiples, but all these classes 
are not in the kernel of r*. Hence, H*(SDf3; Z) is detected by Q, Q x Z2, and Df2. 

Let w1 : (x,y,z) a-* (0,0,1) and W2: (x,y,z) a-* (0,1,1); H*(SDf3;ZWl) = 
(h,eh + e2, fh + f2, eU5 + hU5, fv5 + hv5,ehU5, fhv5), all exponent two, and 
H*(SDf3; ZW2) = (e+ f +h, eh, fh, hU5,hv5, e2u5 +ehu5, f2v5+ fhv5), all exponent 
two. 

The module structure of H*(SDf3; ZW) in each case is determined by the injec- 
tion toH*(SDf3; F2). Detection of all elements but ,n U e3h follows from mod-2 
detection. 

We check to see if e3hKn is detected now. In the Bockstein spectral sequences, 
e3h is hit by e3. The element e3 in H3(SDf3;F2) is only detected by subgroups 
isomorphic to Q, namely (x, yz) and (xz, yz). We can see from the BLES that our 
only hope for detecting e3h E H4(SDf3;ZW) lies in the quaternionic subgroups. 
After applying the BLES, we discover e3h E H4(SDf3;ZW2) restricts to 2'K in 
H4((x,yz); Zw2) = H4((x,yz);Z). However, e3h E H4(SDf3;ZW1) is not detected 
by any subgroup, nor is e3hKn E H8n+4 (SDf3; Zwl). We see in each case that 
r*(e3h) = r*(3w(e3)) = 3(r*(e3)) = f(a0), which is zero in each case, as we can 
recall from the computations for Q. 
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Hence SDf3 is needed to detect w-basic groups in degrees congruent to 0 
mod 4. 

A7. THE GROUP W2i+i =X,YIX2 = = 1, yxy-1 = XX ) 

We have H*(W;F2) = (e1,c,e3, t)/(ei)2 = el Ues ec2 (e3)2 0, with 
dim(e) -dim(c) = 1, dim(e3) = 3, dim(S) = 4. Here, e1 is dual to x, and c is 
dual to y. 

Let rl: (x) -+ W and r2: (x2,y) -Z2i-I x Z2 -* W be inclusions. Then we 
have r* ei 1-4 a, c H 0, e3 H ab, t- 4- b2, all are clear from the spectral sequence; 
and r* e1 - 0 ,c 0 c c, e3 F-+ ac2 , H-* b2 + bc2. The last two computations are 
completely straightforward using the Gysin sequence and the double coset formula. 
These two subgroups detect all but e1c t&0, which is not detected by any proper 
subgroup. 

We find H*(W;Z) = (eic,c2,e3c2 ,I ), with exp(elc) 2-1 and exp(K) = 2i. 
Here the exponent of i is found by injection of a maximal cyclic subgroup at the 
E2 term of the BSS. Since Hi(W; Z) = Wab = Z2i- X Z2, by universal coefficients, 
exp(Cic) 2i-1. With Z coefficients, the BLES determines both restrictions com- 
pletely; r*(CIcKn) = 2b2n+1 r*(is;n) b2n r* D r* is injective. 

Let w,: x O,y H-+ 1, and W2 x,y E-> 1. Then H*(W;Zw1) = (c,eIc,e3c), 
H* (W; ZW2) (el + c, c1c, C3c), all exponent two. Since both of these are all 
exponent two, any desired restriction map can be computed with the BLES. To 
determine detection, we need only check the classes which reduce mod-2 to un- 
detected classes, i.e., c1cin in each twisting. In H*(W; ZWl) we are alright, as 
r* (ecCKn) = 2b2n+l. In H* (W; ZW2) we need to use the other index-2 cyclic sub- 
group, (xy), and find c1cICn restricts to 2b2n+l. Hence, W is integrally detected by 
abelians though it was not detected with F2 coefficients. 

A8. THE GROUPS G x Z2, WHERE G IS BASIC 

These groups are w-basic only for the homomorphism with kernel(w)=G; the 
calculations are straightforward and are left for the reader. The only group of 
concern in terms of detection is Q x Z2, where the terms a2c2n+l and a3c2n+l are 
only detected by subgroups which are also isomorphic to Q x Z2. Eventually, we 
reach Qg x Z2, where they are not detected at all. Thus we need Q x Z2 in all 
degrees to detect w-basic 2-groups. 
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